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Abstract

oo
Jiektudy.t\w properties of the deterministic equivalent program
of a stgchastic program with recourse. After a brief discussion of
the place of the stochastic programming model in the realm of stochastic
optimization and the definition of the problem under consideration, the

three-—-fellowing sections i?e devoted td the characterization of feasible
. 'H . . L)*':, ’
solutionq& The-two-laot--sections- examine the various properties of

X i

the objective functioﬁs\(debendent on or independent from the type of

distribution of the random elements). (.‘




1. Introduction. In the first part of this survey, we shall be
particularly concerned with the properties of the deterministic equi-
valent program of a stochastic program witlL recourse. We shall restrict
our attention to the two-stage linear problem with fixed recourse.

These limitations have for principal purpose to simplify substantially
the presentation. However, whenever it will seem to be appropriate

we shall indicate the extent to which certain of these results can be
generalizedf On the other hand, although the title indicates that

this paper is essentially a survey, a fair portion of the results
mentioned here have never appeared in print; most of these can be con-
sidered as sharpened versions of propositions which have appeared
previously or as a different approach to known results,which allows

for a somewhat more satisfactory treatment. A few results are genuinely

original.,

We do not intend to give an historical account of the various
developments in this field; however, we shall try to sketch the evolution
one can observe in the statement of the problem as well as the various
techniques which have been used to resolve some of these difficulties.

The following parts of the survey will be devoted to some characterizations
of the optimal solutions of stochastic programs, to the nonlinear and
multiple recourse formulations and to some computational experiences as

well as a few selected applications.

H
'Some generalizations are so trivial in nature that they might remain
unmentioned.
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Before we give a precise mathematical definition of the problem,
it might be worthwhile to place this class of problems in a somewhat
larger context. Consider a decision maker faced with various alternatives.
His decisions are subject to a certain number of constraints and his goal
is to optimize a given criterion. However, at the time of his selection
of one of the alternatives, some of the parameters of the problem are
unknown to him. The amount of information which is given about these
parameters divides this family of decision making problems into two main
classes to which the economists refer as: decision making under uncer-
tainty and decision making under risk. In this first class of problems,
essentially nothinz (or very little) of a quantitative nature is available
to the decision maker. In the second class, it is assumed that the decision
maker is given a description of these unknown parameters in terms of a
well determined probability law. (Various papers have studied models
where some partial knowledge of this probability law is available. In
[Miyasawa, 1968), and [Avriel and Williams, 1969] one can find a discussion of

information structures in stochastic programming problems.)

The term Stochastic Programming will be reserved for those pro-
gramming problems which fit in this second class. In the literature one
finds various papers dealing with mathematical programs whose parameters,
or some of thelr parameters. are random, but which by our definition may
have little to do with stochastic programming. Some of these papers
discuss various problems the importance of which ranges from amazing

mathematical puzzles up to some important and sometimes difficult quesvions
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:g- vhose solution would most definitely enhance our chances of solving
"difficult" stochastic programs. For example, a complete solution to

the distribution problem:

Find the distribution function of Q(A,b,c)
where Q(A,b,c) = {Min ex | Ax = b, x 2 0}

and A,b,c are random matrices,

is neither expected, nor is it necessary for solving a large class of

3 stochastic programs; however, it is obvious that any additional insight

=Y
i
-3
4
“

one might gain in this question could prove very worthwhile.

Rather than giving an axiomatic definition of a model for stcchastic
programs, as can be done for linear programs [Dantzig, 1963, Ch. 3],
we shall limit ourselves to some of the characteristics of stochastic
optimization problems. In some sense we shall try to point to those
properties which constitute the essence of stochastic optimization models.
First, perhaps, the sequential nature of the problem, i.e., the decision,
is selected before the random elements, say ¢, of the problem can be
observed. Second, the solution is the selection of one particular decision,

say x 1in X, where X denotes the set of alternatives. Third, the

actual value z(x,t) of a given decision can only be detzrmined after

~bserving ¢. Fourth, it is assumed that the decision maker has a
definite attitude towards risk described by some function, say u, which

usually has all the properties of the standard utility function in mathe-

matical economics. In particular, this implies that the criterion for

optimization can always be expressed in terms of the maximization (or
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minimization) of the expectation of utility. Finally, it is assumed
that the probability law of £ is completely dctermined once a parti-
cular x is selected, i.e., we are given the probability srace

(Ex,Sz,px) on which ¢ is defined.

Thus a very abstract formulation of a stochastic optimization

problem could be:

Given [(Ex,%,ux) J,Z,U],

find inf E{u(z(x,£))}

We do not intend to develop any further an abstract theory of optimizationm,
nor do we intend tc make any specific use of the above moiel. Our purpose
in formulating a fairly abstract stochastic optimization problem is

thit it might serve as a point of reference whenever we study any parti-
cular model for stochastic optimization. Many problems studied in mathe~-
matical economics, operations research, system engineering and control
theory, fit into this class of optimization problems: e.g., Markov
Programming, Inventory Problems, Stochastic Optimal Control Problems,...
Determining to which category a given stochastic optimization problem
belongs is irrelevant. In practice, these categories have considerable
overlap, e.,g., the newsboy problem+ which is probably the first example

of a stochastic programming problem found in the literature, is usually, and

rightfully so, thought of as belonging to that class of problems dealt

Rriefly: Given a distribution of demand, a purchase cost, a selling
price and givepn that no unsold papers can be returned, a newsboy seeks

the optimal number of papers to order so as to maximize his expected
profit.
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with in inventory theory.

The first formulation of stochastic programs with recourse was
given by G. Dantzig [Dantzig, 1955] who called them linear programs
under uncertainty, and by E. Beale [Beale, 1955] who used the name of
linear programs with random coefficients. Beale's formulation can be
viewed as an n-dimensional generalization of the newsboy problem.
Dantzig's formulation is in some sense somewhat more general, but still
includes many of the particular properties of the n-dimensional news-
boy problem. (See in particular the application [Ferguson and Dantzig,
1956] which motivated Dantzig's work.) As already mentioned above the
actual formulation of the problem has not remained scatic; this was
essentially due to the necessity of widening the range of possible appli-
cations as well as to the desirefor somevhat more rigorous mathematical
foundations for the theory. Although we will not pursue this objective
here, this “grown-up" model for stochastic programming also allows for

a more interesting economic analysis.

2. Statement of the Problem. Let & = (c(£),q(&),p(8),T(E)) be a

random vector defined on a probability space (5,Fu) where I 1is a

Borel subset of RN, N = (a+l)(ml) +n -1, J 1is a o-algebra containing
the Borel subsets of =, 1y is a probability measure defined on =. The
coordinates of a point ¢ in = 1s a collection of four matrices

c,q,p and T of dimension 1 xn, 1 x 5, mx1 and m xn respectively,
i.e., c,q,py, and T are projections of & . By F we denote the

~
=

distribution function associated with u and by the support of




N
the distribution of ¢, i.e., the smallest closed subset of R of

measure 1.

Definition (2.1). If for all i,i,k the random functions cj(g),
qj(E)Pi(i) and qj(i)tik(g) have first moments, then the random variable
£ 1is said to satisfy a (weak) covariance ccndition. We shall assume

that such a condition is satisfied by the random elements of the problem.

From a practical viewpoint this condition might seem difficult to
verify, however it is easy to see that if ¢ has variance, then assumption
(2.1) is automatically satisfied. Similarly, if either q or p and
T are fixed, then it suffices for ¢ to have first moments to satisfy
the covariance condition (2.1). Later when we shall refer to stochastic
programs satisfying a weak covariance condition, we shall always assume
that its random elements satisfy (2.1) or some other condition which is

weaker than (2.1), but would be sufficient tc make the statement valid.

A stochustic programming problem with fixed recourse can be formulated

as:
(2.2) Find inf z(x) = E_{c(£)x + Min[q(g)y|T(e)x + Wy = p(&)i}

> g >

x>0 y20

Ax=b

vhere A, W, and b are fixed matrices of size m x n, m x E, and m x 1
respectively, and Eg denotes expectation with respect to f. We speak
here of fixed recourse by opposition to the case when the matrix W is

also random. This more general case has been discussed in [Walkup and

Wets, 1967-b].
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Without loss of generality, we can assume that W has full rank,
since otherwise there is a linear non-singular transformation of the
system of equations T(£)x + Wy = p(£) which would render some of the
rows ¢f W identically zero; in which case the corresponding constraints
either generate some deterministic restrictions on the decision variable
x which could have been included in the constraints Ax = b, or they
constitute a genuine system of stochastic equations whose solution depsnds
non-trivially on &, i.e., no particular vector x can be found which
would satisfy these equations with probability 1. In this last eventuality,

the problem would be infeasible,

As a function of x and £, which we shall denote by Q(x,£), the
problem {Min q(&)y|Wy = p(£) - T(£)x} might be infeasible or unbounded
>

y20
below, in which cases we shall adopt the standard conventions and define

Q(x,g), i.e., the optimal value of the program to be +» and -=,
Thus the integrand of (2.1) might vary from +» to ~~ inclusively.
Accordingly, the integral EE{-} = f «dpy is defined to be +=, if the

integrand takes on the value +« on a set of positive measure. It is

-o 1f the integrand is less than +« almost everywhere and takes on the
value -= on a set of positive measure. If the integrand is finite almost
everywhere, it corresponds to the Lebesgues-Stieltjes integral. This in-
tegral possesses essentially the same properties as the standard Lebesgues-
Stieltjes integral except that subadditivity replaces the usual

additivity property.

Due to the multistage nature of (2.2) it has been traditional and

also convenient to write (2.2) as follows:
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Without loss of generality, we can assume that W has full rank,
since otherwise there is a linear non-singular transformation of the
system of equatinns T(£)x + Wy = p(£) which would render some of the
rows ¢f W identically zero; in which case the corresponding constraints
either generate some deterministic restrictions on the decision variable
x which could have been included in the constraints Ax = b, or they
constitute a genuine system of stochastic equations whose solution depends

} non-trivially on £, i.e., no particular vector x can be found which

would satisfy these equations with probability 1. In this last eventuality,

the problem would be infeasible.

As a function of x and £, which we shall denote by Q(x,£), the

problem {Min q(g)y|wy = p(g) - T(E)x } might be infeasible or unbounded
y20
below, in which cases we shall adopt the standard conventions and define

Q(x,¢), i.e., the optimal value of the program to be +» and -=,

Thus the integrand of (2.1) might vary from +~ to -= inclusively.

O T RTINS TR
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Accordingly, the integral Eg{'} = [ +dy is defined to be +«», 1if the

integrand takes on the value +« on a set of positive measure. It is

RO

-» 1f the integrand is less than +* almost everywhere and takes on the
value =-» on a set of positive measure, If the integrand is finite almost

everywhere, it corresponds to the Lebesgues-Stieltjes integral. This in-

S P A

tegral possesses essentially the same properties as the standard Lebesgues-

Stieltjes integral except that subadditivity replaces the usual

additivity property.

' Due to the multistage nature of (2.2) it has been traditional and

also convenient to write (2.2) as follows:
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(2.3) Find inf z(x) = Ee{c(g)x + Min q(£)y}
subject to Ax =b
T(E)x + Wy = p(&) a.e.

x 2 0, y20

where it is understood that the stochastic constraints T(£)x + Wy = p(£)
must be satisfied with probability 1 (a.e. denotes almost everywhere,)
As we shall see, this last condition follows immediately from the defini-
tion of Eg{'}° From a theoretical viewpoint it is sometimes convenient
to amalgamate the fixed constraints Ax = b, x 2 0 and the stochastic
constraints; however, for practical purposes such as formulation and

computational procedures it is clearly advantageous to separate them.

We shall follow this practice here.

Problem (2.3) can be seen to have all the attributes of the class
of stochastic optimization problems described in the introduction. The
sequential nature of the problem [Dantzig, 1955, Introduction] is clearly
illustrated: The decision process involves a choice of a decision x,
then ¢ occurs and is observed; finally a recourse action y 1s selected
so as to satisfy the stochastic constraints. Since the decision y is
completely determined by the selection of a given x and the occurrence
of some ¢, the only real decision is the choice of x. The actual value

of the decision is determined as soon as x and ¢ are known, even

though determining this value involves solving a linear program; the structure

of the problem determines this value uniquely. The attitude towards risk

of the decision maker is reflected by the linearity of the objective, i.e.,

e S e e i
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it indicates neither risk aversion nor risk seeking. Finally, the
definition itself of the problem guarantees that one has all the

necessary information concerning the random elements of the problem.

3. The Deterministic Equivalent Program, As mentioned in the intro-

duction, the purpose of the first part of this survey is to characterize

the so-called deterministic equivalent program of problem (2.2). Let

¢! z(x,8) = c(§)x + Q(x,£)

then

a4

(3.1) z(x) = Eg{z(x,g)} Eg{c(g)x +Q(x,8)} = cx + Q(x)

where ¢ the expectation of c¢(&) 1is finite, since assumption (2.1) implies that
all the components of ¢ are integrable. Also, in view of the definition
of the function Q(x,¢) and the integral, the functions z(x) and Q(x)

are well defined for all x in R" as functions with range in the extended

YIS AT, TR S5t 44 Ty

reals, provided Q(x,f{) 1is measurable. This is fairly easy to prove, See e.g.,

~ s

[Kall, 1967, Section 1, Satz 1] or [Walkup and Wets, 1967-b, Lemma (2.3)].

ST

Note that among other things, it is possible for Q(x) and thus 2z(x) to be

identically +~» or take on only the values +» and -=. The problem

oo

3 (3.2) Find inf z(x) = cx + Q(x)
Ax = b

x20

| is known as the .Jcteministic equivalent program of a stochastic program

with recourse. Later on we shall give a more detailed form of the
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deterministic equivalent program, but before we do so, we need to probe

somewhat deeper into the particularities of the function Q(x). The
next section is essentially devoted to the description of the region of

finiteness of Q(x). The properties that Q(x) possess on this set

receive further elaboration in Section 7.

4, Feasibility Region. The feasibility region cf a mathematical program

is usually defined to be the set of points satisfying the constraints. One
can also define the feasibility region as the set of those points at which
the objective is less than +~ accepting implicitly the convention that
the objective is +~ outside the set determined by the constraints. In
most practical situations these two definitions are equivalent. That

this is also the case, for the class of problems under consideration,

does not follow--as is usual--from the definition of the problem. In

fact, the notion of feasibility is a very touchy problem, especially
because the more natural definitions of feasibility do not seem to yield
any grip on the computational aspects of the problem, whereas a more

constructive type of definition seems to be a little too restrictive.

In the first papers dealing with stochastic programming this problem
did not arise, because the models considered were such that some assumption,

stated explicitly or present implicitly, eliminated this question. Let

K, = {x]ax = b, x 2 0}

be the set determined by the fixed constraints of the problem. If we

assume relatively complete recourse, i.e,, for all x in K, there always

e a2 om
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exists some y 2 0 such that Wy = p(f) - T(£)x for every § in RN,

then obviously the feasibility region is determined by K, alone. One
can verify that the models considered by [Beale, 1955], [Dantzig, 1955],
[Dantzig and Madansky, 1961], [Williams, 1963}, [Williams, 1965], [Wets,
1966~-a], and [El-Agizy, 1967], to name but a few, all implied relatively
complete recourse. This assumption limits somewhat arbitrarily the range
of possible applications, especially with respect to production models;
and even though in most cases its verification might be easy, in general

this might not be the case., During the last five or six years a certain

e T .

number of papers [Wets, 1966-b], [Kall, 1967], [Dempster, 1968}, aad
[Parrikh, 1967], to again mention only a few, started with approaching

the problem of (i) establishing criteria for determining when the assump-

R T

tion of relatively complete recourse is satisfied, as well as (ii) con-
sidering a more general model for stochastic programming where this
undesirable restriction has been removed. In Section 6, we shall discuss
the problem of verifying the assumption of relatively complete recourse,
as well as some related questions. For the time being we restrict our-
selves to the problem we have defined and characterize as completely as

possible its region of feasibility,

As indicated above, we can define the feasibility set as the inter-
section of the set determined by the fixed constraints K1 and a set
K, determined by the induced constraints generated by the stochastic

constraints. We consider the following three candidates for K,:




(1) K

= {x |Q(x,£) = +o0 with probability zero}

That these two definitions of Kg are equivzlent follows immediately from
the += and -» conventions we have adopted for the definition of the

function Q(x,£).
(11) K: = {x|Q(x) < 4=}

This set is known as the strong feasibility set since it clearly defines
the region of finiteness of Q(x) (unless Q(x) takes on the value -«),
These two first definitions of feasibility seem to lead to natural

interpretations from a mathematical viewpoint as well as from an economic

standpoint. The third definition
(111) K} = {x|[ve e %, 3y 2 0 such that Wy = p(&) - T()x}

can be viewed as requiring that the stochastic constraints be satisfied
for all points of the random elements which are "possible" where possible
is defined as those points 1lying in the support of the distribution

of £. As we shall see, this last definition allows for a more con-
structive approach to the description of the feasibility region, but from
a purely mathematical viewpoint this "possibility" interpretation of the
stochastic constraints is not as gratifying as the probabilistic inter-

pretation associated with the first two definitions.

Although the following is not the case in general [Walkup and Wets, 1967-b],

for the problem at hand, we have that:

g = {x |with probability 1 3y 2 0 such that Wy = p(§) - T(£)x}

T R——
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Theorem (4.1). For a stochastic program with fixed recourse where

£ satisfies a weak covariance condition, such as condition (2.1), the

relation
(4.2) K. = K? = K3
holds.

~

Proof. Since is some set of probability 1, it follows that

Kg - Ks. Thus to prove the first part of the theorem it suffices to

show inclusion in the other direction. The following notation has proved

to be very usetul for problems of this type. Let

(4.3) pos W= {t|t =Wy, y >0}

be the positive hLull spanned by the columns of W, i.e., the closed

convex cone with apex at the origin genarated positively by the points of R"

corresponding to the columns of W. Thus, we can write

Kf = {X|P(€) - T(§)x € pos W with probability 1}
and
KR = {x{p(&) - T(5)x ¢ pos W for all : in 3}

If x¢ K; then poc W contains a set, say \x’ of measure 1 witnh

respect to the measure induced by the randem vector Ex(f) = p(&) = 1(L)xX.
Since pos W 1is closed, the closure of Ax is also contained in pos W
and at fortiori so is T; the suppport of ix(f). Since Lh is a linear
function of ¢ (by definition p(7) and T(‘) are canonical projections
of ) it follows that Tx and the closure of Rx(~) coincide,

ied, x ¢ KE. Thus K" = K?.
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To show the remaining equality we first observe that the inclusion
Ky DK, holds trivially from the definition of the integral. Since

KY = Kg and

2 has measure 1, there remains only to be shown that for

every x in Kg

a0 = [ Qe du < 4o,

Let {W(i)} be a subcollection of the square non-singular submatrices

of W of rank ﬁ, such that the {w(i)} are distinct and such that

{pos W(i)} constitutes a covering of pos W. Let q(E)(i) denote the
subvector of q(&) corresponding to the colums of W determining W(i).
For every x in Kg and every ¢ in 3, p(g) - T(g)x belongs to some
pos w(i) and since w(i) determines a feasible but not necessarily optimal
basic solution for the recourse problem whose right-hand side is

o(E) ~ T(&)x, we have that

Qx,8) 2 q(8) ()W i) IP(D-T(O)X] = v 4y (x,0) .

The integral is isotone, thus

= Q(x,£)dy 2 vy (x,8)d

where E(i)(x) = {£]p(g) - T(&)x ¢ pos w(i)}. The right-hand side

of this inequality is finite, since £ satisfies the covariance condition
(2.1). Let {Z(J>(x)} be a finite partition of 'E\-', where each Z(j)(x)

is obtained from the finite collection {E(i)(x) N ?} by a finite number
of set theoretic operations (intersections, set diffeiences). That such

a partition exists follows from the fact that x ¢ Kg implies that
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UE(”(X) 3"5: Now, define c(j)(x,g) on z(j)(x) as follows
Vi) (a8 = *gzi{v(i)(x.a)ls EPNCIPINCIE

Then

Q(x) =f~Q(x,€)du = > f Qx,6)du £ D f G(J-)(xvi)d“-
C (1 "Ey (1) I50

The last member of this inequality is a finite sum of finite terms, from

which it follows that Q.x) is bounded above. Thus K: ZDKg, which

completes the proof.

The first equality in (4.2) extends to the case where W is also

random [Walkup and Wets, 1967-b] provided one requires that the restriction

~
-

of pos W(E) to

from © C RN+(nXm) into a metric space (€,d) whose points are convex

is continuous, where pos W(5) 1is viewed as a map

cones with apex at the origin and the metric d is determined by the
Hausdorff distance between their intersections with the unit ball [Walkup
and ‘.ets, 1967-a). However, when W 1is random, there seems to

be no easily verifiable condition which one could impose on ¢ so as to

insure that the se-ond equality in (4.2) also remains valid.

From the definition of the problem (2.2), it is easy to see that feasi-
bility depends only on the p, T components of ¢. Thus if we let

~ N
Gp T be the projection of = on the p,T coordinates of R, we have
k]

that
K= Nk)=N <)
L ’ L w
Pyl
where
(4.4) K, (&) = {x]p(&) = T()x ¢ pos Wi = {x'Q(x,7) « ++},
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By arguments similar to those used in the first part of the proof
of theorem (4.1), one can show that K, = N ¢

~

p,T
Corollary (4.5).

T Kz(g) where Z
support of the marginal distribution of (p(£),T(£)).

For a stochastic program with fixed recourse, where
i
£

satisfies a weak covariance condition, such as (2.1), the relation

= KP = k¥ =
K, = K; = K, =K

2
holds, where

K, = Q K,(2) = {x|p(z)-T(t)x € pos W for all (p(%),T(X)) 1in
Lekp, T

~
-
1)
-

p,T
In view of the preceding corollary, we shall write K, whenever we

want to refer to a set of constraints induced on x by the stochastic

constraints of problem (2.3): T(&)x + Wy = p(£) a.e. This set K,
possesses various interesting properties which we investigate in the
remainder of this section.

Theorem (4.6).

Let

L be a set obtained from
operations:

~
-
)

T by applying the
?
topological closure, convex closure, positive closure,

positive scalar multiplication, or any of the (not necessarily unique)
inversesof these operations, then

K, = MK, (2.
el

(The inverse operation of convex closure yields the extreme points.)
Proof.

Suppose K, = r1 K,(%), then the fact that pos W is closed
cel!

justifies replacing L'

zl

either by its closure or by a dense subset of
in the definition of K,.

The remaining assertions of the theorem
follow rather directly from the fact that

the definition of KZ(S)

pos W 1s a convex cone and
given by (4.4).

p,T is the

}

P

RYXCrRI
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Theorem (4.7). The feasibility region Kz is a closed convex subset

R

of R". Moreover if the closed positive hull of written

p,T’

pos (E; T)’ is a convex polyhedral cone, then K, 1is a convex poly-
14

hedron.

>

Proof. Since K2 = Kz(g), the first part of the theorem follows

e

11},
o'

trivially from the T observation that for each ¢, Kz(;) is

a closed convex polyhedron. The second part follows from theorem (4.6)

~ 1 ™
since in this case we may veplace Ep T C R(n+ )m by a finite set,
14
namely by any set of points whose positive combinations span pos(g

P:T)\

This set of points can be chosen finite by (4.6) since by assumption ¥

pos(?b ) is a polyhedron and thus has only a finite number of extremal

T

elements. (Note that there are other cases for which K2 is polyhedral, .

e.g., if pos W=R", then K, = R",)

Note that since we are dealing with finite dimensional real vector v
spaces, which have the Lindeldf property, it follows that K2 can always
be represented as the intersection of at most a countable subcollection
of sets KZ(;). Alsoin view of theorem (4.6), the assumption that pos(?%’T)
is polyhedral is probably the most general type of assumption which yields

an easy proof that K, 1is polyhedral. In practice one might expect that

very few cases will occur when pos(E; T) will not be polyhedrel since
s

pos(E; T) is polyhedral if the components of p and T are independent,
s
if p and T have a finite discrete distribution, if the convex hull

~

of Ep T is polyledral, etc. There is howevcr one other interesting
1

case in which one is able to prove that K. is polyhedral.

Befcore we coasider this, we introduce a concept very useful in the
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theory of convex polyhedra in general and stochastic programming theory
in particular, We first give a precise meaning to the notion of extremal

elements of a convex cone.

Definition (4.8). Let A be a matrix of row size m. The columns

of A can be thought of as points in R". Then a subset of the columns

of A, say T, constitutes a frame for the positive hull of A if
pos A=pos T and T is minimal, i.e., for every column Tk of T

we have that pos (T~Tk) # pos T.

Simple examples will show that a set of points in R" might contain
more than one frame and that two different frames do not necessarily have

the same cardinality. Naturally, every finite set of points in R™ con-

tains a finite frame.

Definition (4.9). The matrix A* 1is a polar ratrix of A if

(1) pos A = {t]a*t < 0}
(i1) The rows of A* constitute a frame of the polar cone

pos* A of pos A, where pos* A= {T|1t 20 for all t ¢ pos A}.

Similarly, one could define the polar matrix of A as a matrix whose
rows determine a set of minimal supports for the convex polyhedral cone
generated by the points represented by the columns of A. In some sense,
the polar matrix is a positive inverse of W, The notion of polar matrix
was first introduced in [Wets, 1966~c] in connection with the first proof
of theorem (4.10) below., A similar concept, but used in a different

context, can also be found in the work of Fulkerson [Fulkerson, 1968].
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He uses the name of blocking matriz.

In general, the number of rows of A* 1is not commensurate with the
numbers of columns of A, In particular A* might have no rows, which
corresponds to the case when pos A has no supports, i.e., when
pos A = Ra. On the other hand, if pos A 1s a cone over a neighborly polytope |
[Griinbaum, 1967; Chap. 7], then pos A might contain an extremely large number
of rows when compared with the number of columns of A. Various efforts
have been made to relate the generalized inverse of a matrix A to the
polar mtrix of A. So far none of these attempts have been remunerated

by success. One might reasonably expect that no interesting relation does

exist, [Wets, 1968].

Theorcm (4.10). Suppose T 1is fixed in the stochastic program (2.2)

and ¢ satisfies a weak covariance condition, then K2 is a closed convex ?

polyhedron. ‘

Proof. Since T is fixed, by corollary (4.5) =x ¢ K, 4if and only

o~
-
-
-

where is the support

111

if (p(£)-Tx) € pos W for all p(g) 1in

of the distribution of p(§). Now (p(£)-Tx) ¢ pos W if and only if

;
¢
]
4

Wr(p(£)-Tx) < 0. Thus x e K, if and only if (W/T)x 2 W*p(§) for
all p(¢) in E; or, by theorem (4.6), for all p(f) in I where §

A~
-
-

is the closed convex hull of p’ This possibly infinite system of

linear inequalities can be replaced by
(4.11) (WFT);x 2 af = Sup wWip(g) 1 =1,...,0
p(&el

where w; denotes the 1th row of the matrix W*¥ and ¢ is the number of
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rows of the matrix W#., Unless af < 4o forall 1i=1,...,8 the

problem is infeasible in which case K =@ and the theorem holds

trivially, otherwise the system (4.11) constitutes a finite system of

linear constraints which determine the polyhedron
(4.12) K, = {x|(W*T)x 2 a*}

where o* is the vector whose components are ai.

E'1'
the closure of its positive hull) is polyhedral, then K, 1is polyhedral.

(or

‘ Corollary (4.13). If p(g) and T(f) are independent and

tn?
4

~
-
51
-

Proof. Since p(f) and T(f) are independent

X For

p,T P T'

each T(&) in let K2(T(£)) denote the set of x's such that

ET,
\; [WHT(E) ]x 2 o

P~
-
]
[

Now K, = rl Ky(5) = n~K2(T(s)). Since is polyhedral, by
Ces

~ T
T(§eE

: theorem (4.6) we may replace in by a finite set repre-

E*r~ (8 eF]

senting the extremal elements of Epe Thus K, can be written as a

finite intersection of polyhedra KZ(T(E)).

So far we have shown that the region of feasibility of a stochastic

program with fixed recourse, i.e., the set
l(-v:l(lf\K2

is a set possessing fairly interesting properties. It is always closed and
convex and under fairly general assumptions it is even polyhedral. When T {is

fixed, we have also seen that x € K if and only if x satisfies some
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deterministic linear constraints (4.12) where a* represents in some

sense a lower bound of the set . Determining such a lower bound--

§1)
Rl

especially if it is easy to compute--might be very useful in obtaining
criteria of feasibility as well as for constructing algorithmic procedures
generating feasible solutions. In this pursuit it is convenient to intro-
duce some terminology related to convex cone ordering of real vector

spaces. This approach was first presented in some lectures given at the
University of California [Wets, 1967]. In his doctoral dissertation [Parrikh,

1967] Parrikh shows that these ideas can also be fruitfully exploited in a

slightly different setting.

PDefinition (4.14). The partial ordering < 1is said to be a cone

ordering induced by a closed convex cone C C R" if

x Xy is equivalent to y - x ¢ C
We need the following obvious prcperty of cone orderings:

Proposition (4.15). Let X denote the cone ordering induced by the

C
1
closed convex cone C; and let ;SC denote the cone ordering induced
2
by the closed convex cone C Then

2.

xX. ¥€. z implies x<X z

N
C, "G ¢, +C,
where C; + C, denotes the vector sum of C;, and Cp. 1In particular
if €, 2 C, then
< < <
x-\,cl y.\c2 z implies x\_cl 2z
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Definitions (4.16). Let I be a subset of R and %&: a cone ordering

induced by C. A point % is said to be a grectest lower bound of I
with respect to the ordering induced by the cone C 1if <11ECaC for

all points a satisfying «a :Scc for all ¢ in .

Moreover if aq also belongs to the closure of I, then % is said to

be a proper lowzr bound of E.

Theorem (4.17). Consider a stochastic program with fixed recourse whose

random elements satisfy a weak covariance condition, Let C be a closed
convex cone contained in pos W, A&(x) = {p(&) - T(£)x] p(&),T(E)eE; T}
and ac(x) is a proper lower bound of A(x). Then x € K2 if and only

if aC(x) € pos W,

Proof. By theorem (4.6), x ¢ K2 if and only if the closed set
A(x) C pos W. The rest of the proof follows from the last part of

proposition (4.15) since by assumption C C pos W.

Corollary (4.18). Suppose T is fixed in a stochastic program with

fixed recourse whose random elements satisfy a weak covariance condition.

Suppose C 1s a closed convex cone contained in pos W and s is a

~
-
-

proper lower bound of o’ Then x ¢ K, if and only if

aC(x) " ay - Tx ¢ pos W, In particular, x ¢ K, if and only if

2
~
-
=

P
u* where o* is as

- Tx ¢ pos ¥, where is a proper lower bound of

Q
pos W 0‘pos 1y

with vespect to % Moreover,

pos W' apos W

defined by (4.11).
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Proof. The first part of the corollary is an immediate consequence of

the theorem and the equality o* = follows directly from their

0tpos 1)

respective definitions.

Provided that a proper lower bound exists, the usefulness of the above
characterizations is only limited by our capability of computing it. When T
is fixed, one way to determine this proper lower bound is to compute W, This
might be by itself a major undertaking which we shall discuss further
in the following section. In practice, finding such a lower bound reduces
down to finding some cone C contained in pos W such that the proper
lower bound,with respect to the ordering induced by C, of any subset in

R" s fairly easy to compute. This will certainly be the case if ¢

~
=
ol

p,T

respect to some orthant is also a proper lower bound, then by theorem

can be selected to be some orthant. If a lower bound of with
(4.17) and its corollary, verifying feasibility of any given x 1is a
fairly easy task. We shall devote a fair portion of the subsequent
developments to the case when pos W contains some orthant. Moreover,
the following proposition helps justify the relative importance we attach
to this case.

Proposition (4.19). Let '-SC be a cone ordering on R", Then every

bounded subset of R™ has a unique greatest lower bound if and only if
the cone C 1is the positive orthant with respect to some coordinate

system.

Proof. The if condition is obvious. To prove the only if conditions

we make use of Choquet's characterizations of simplices in terms of
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homothetic intersections. Suppose every bounded subset of R" has a
unique greatest lower bound with respect to '-\C_C. It is easy to verify
that uniqueness implies that C must be a pointed cone and that the
existence of lower bounds for full dimensional subsets of Ra implies

that C has dimension m. Let H be some hyperplane supporting C

at the origin only, H+ the closed half-space bounded by H which contains

c, Hi the complement of H+ and ¢ in H: the unit normal to H.

Let s and t be any two distinct points of S

c 1]
") then Ps (s+C) N H+

and Pt = (t+C) N H: are homothetic, with s and t greatest lower bounds
for P and Pt respectively. Suppose Q = Psf\ P # @. By the
hypotheses Q has a greatest lower bound q and thus (q+C)N H:= Pq 24Q.
Since Ps 2Q, s 1is a lower bound for Q and s ‘\'(C q. Thus Ps o] Pq

and similarly Pt D Pq so that Pq oQ = Ptf\Ps D Pq, i.e., Psfj Pt = Pq'
Thus any homothets of the closed bounded figure Po intersect either in

a point, a homothet of P or the empty set. By Choquet's characterization
{Choquet, 1956])--for a simple proof see [Eggleston, Griinbaum and Klee,
1964]—-1’0 must be a simplex, Since C has full dimension, it follows

that C 1is a simplicial cone which is linearly isomorphic to the positive

orthant of Rm.

Theorems (4.7), (4.10) and (4.17) and their corollaries summarize
the most useful characterization of the feasibility region K, which are
so far available. Among other things they allow us to rewrite the deter-

ministic equivalent program as
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(4.20) Find inf z(x) = cx + Q(x)
subject to Ax

(W*T(z))x

X

where the function Q(x) is finite on the set determined by the con-

straints unless, as we shall see, it is identically -« on this set. If

~
-

the structure of
p,T

then even more practically oriented expressions can be found for the

deterministic equivalent problem. For example, if T is fixed, then

one can write (4.20) as

(4.21) Find inf z(x) = cx + Q(x)
Ax

(W*T) x

where 1* {is defined by (4.11).

2

allows us to use some of the preceding results,

LA e S S S i

b

* for all in %
Wxp(z) for a ¢ in p,T
0
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5. Finding a4 Feasible Solution.* In the first part of this sectionm,

we outline some very general ideas which can be used to find a feasible

solution. These necessarv concents are summarized in the algorithm (5.5)

and its variants described below. So much will depend on the particular

structure or the particular wav the entities involved are given that in fact

.t 1s impossible to find a unique 'best" procedure. The algorithms that we

describe should be viewed as possible skeletons rather than finished products.

In the second part of this section we deal with some specific cases which ?

allow for very effective sortution procedures.

'The results derived in the first part of this section were obtained in

collaboration with D. Walkup,
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Determining whether a point x belongs to K, reduces to checking
if it satisfies a system of linear inequalities. We consider this problem
solved and thus limit ourselves to the case of finding a point of K,.

In the preceding section we have obtained various characterizations of the
set Kz' In general, i.e., when the support of the distribution or the
matrix W have no special properties, determining if a given x 1is in

K2 is equivalent to determining if

A(x) = {t|t = p(&) - T(D)x, (p(E),T(E)) ¢ £}

is or is not contained in the convex polyhedral cone pos W, where I

-4
=

p,T
theorem (4.6). If I 1is a convex set (polyhedron) so is A(x). Thus

is a set obtained from by any one of the operations mentioned in
in general determining if a given x is feasible comprehends the problem
of determining when a convex set is contained in a convex polyhedral cone.
Depending on the manner in which the set A(x) is given, this problem
might turn out to be fairly easy or extremely difficult., If the set

A(x) 1s finite or more generally if its convex hull has only a finite
number of extreme elements (extreme rays and extreme points) [Klee, 1957]

which can be easily determined, then it is not very difficult to determine

if A(x) C pos W, since this involves at most solving a finite number of .

linear programs which differ only in their right-hand sides, namely,

(5.1) Minimize w = es+ + es

Wy+Is+—Is-=6




where e is a row vector of size m whose components are l's and

Gtx)’ k = 1,...,t are the extremal elements of the convex hull of
A(x). Various tricks are available which allow for considerable
simplification and the work involved is by no means to be equated with
solving t linear programs [Van Slyke and Wets, 1969, Section 5].
Although in general finding the extremal elements of A(x) might prove
to be a real challenge, in some particular cases this might not prove to

be very difficult, e.g,, if the components of T(£) and p(f) are

independent, then the extremal elements of A(x) can be obtained by paying
:p,T
If either A(x) (or

attention only to the extremal elements of which in this case is

a rectangle (possibly unbounded) in Rm(n+l)'
its convex hull) is only available in terms of the bounding hyperplanes

of the set or when 4(x) 1is not even polyhedral, then one would have to

resort to a technique somewhat similar to the one described below.

Feasibility Criterion (5.2). Consider a stochastic program with fixed

recourse whose random elements satisfy a weak covariance condition. A
vector x in K1 is a feasible solution if and only if the optimal
value of each of the 2 convex programs
(5.3) Find inf w = Wﬁ(Tx—p)

(p,T)

subject to (p,T) € I

is greater than or equal to zero, where Wﬁ is the kth row of W* the

polar matrix of W, < is the number of rows of W* and I 1is the closed

convex hull of T .
p,T




R TSt gy, e

-

v AN PV T A

This feasibility criterion is nothing more than a reformulation of

the induced constraints found in the deterministic equivalent program
(4.20). The following proposition provides a method for "improving"
an infeasible solution. In fact, the proposition shows how one can

generate bounding hyperplanes of the set Kz.

Proposition (5.4). Consider a stochastic program with fixed recourse

whose random elements satisfy a weak covariance condition. Suppose I 1is a

P~
-
2

set obtained from p,T by topological, convex or positive closure and

’
% 1is any point in R®.  If (p,T) 1is a point of I such that

WQ(T£¥p) < 0 then either

{x|(ipT)x 2 whp}

is empty or is a closed halfspace in R" containing K, but not =X,
2

If (p,T) and (p',T') are points in Rm(n+1)

such that for all
sufficiently large positive A, (pl,TA) = (p,T) + X(p',T') is a member

Al
of Z and Wﬁ(T x—pA) is unbounded below as A = 4=, then either

{xluat'yx 2 wgp'}

is empty or a closed halfspace in R® containing K, but not X.

Proof. The first part follows directly from the feasibility criterion
(5.2). For the second part if Wﬁ(Txf-pA) = Wﬁ(Tx-p) + AWQ(T'x-p') goes to
~» as )\ goes to +°, then WQ(T'&—p') must be strictly negative.
Combining this last observation with the feasibility criterion (5.2)

completes the proof.
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. This last proposition suggests the following algorithm for producing

a feasible solution x in K.

Algorithm (5.5).

(i) At the start of the ith iteration a set st of 1linear equations
and inequalities in the variables x are given, (At the start of the

first iteration §! is just the set of linear relations determining

YW,

K viz. Ax=b, x20.)

1’

(ii) A feasible solution xi satisfying the linear relations Si

4

"
.

is sought., If none exists the stochastic program is declared infeasible
and the algorithm terrinates.

(iii) For each row Wﬁ of the polar matrix W* in turn, the convex
program (5.3) is solved with x = xi. If all % programs have nonnegative
values, xi is defined to be X and the algorithm terminates. Otherwise
for some k a point (p,T) or points (p,T) and (p',T') as in
proposition (5.4) are found. In this case the appropriate inequality
(WET) x 2 Wkp or (w§T')x 2 Wﬁp' is added to S' to form

i+
sit and the (i+1)St iteration is started from step (i).

YR AN TRt ST e g AR A T S (R ST b e

If L is a convex polyhedron given by linear equations and linear
inequalities, the programs (5.3) to be solved during step (iii) of the

above algorithm are linear programs. We can thus be more explicit in

SRS A M e

the description of step (iii):
(iii') ... Otherwise for some k one finds either an optimal
] basic solution (p,T) yielding negative objective or a basic solution

and a direction (p',T') corresponding to an unbounded feasible pivot

; from (p,T)...
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In this case we can prove:

Proposition (5.6). Suppose I wused in the definition of K2 can be
selected to be a convex polyhedron defined by linear relations. Then
algorithm (5.5) using step (iii') terminates in a rinite number of
steps, It either generates a feasible solution of the program or it

establishes that the problem is infeasible.

Proof. It suffices to show the finiteness of the process. This follows

immediately from the fact that there are only a finite number of rows in
W* and only a finite number of basic solutions and unbounded basic
pivots for each problem (5.3). Thus there are only a finite number of
inequalities which can be added to S!. Moreover, once an inequality

has been added it cannot be generated again.

Note that in fact this proposition gives another proof of the
polyhedral property of K2 under the hypotheses of the second part of
theorem (4.7). If I 1is not polyhedral, there does not seem to be any
condition one could impose on the selection of (p,T) or (p',T') in
step (iii) of the algorithm (5.5) which would insure that the algorithm
converges, unless, perhaps, one is satisfied with an epsilon type of

feasibility as in [Parrikh, 1967].

Not even taking into account the suostantial amount of work which the
computation of W* might necessitate, the somewhat lab.rious fashion
by which the algorithm (5.5) generates &z feasiole solution is due to

the fzet that to test the feasibility of any given x, one

Pa
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p,T (or some set
]

has to take into consideration if not all points of
derived from it) at least a sufficiently large number so as to make the
process Inefficient. In the previous section, we have seen that a con-
siderable simplification is possible when the sets A(x) have a proper

lower bound ac(x) with respect to the ordering induced by some convex

cone C contained in pos W. If this is the case, it is no longer
°p, T’
to verify the feasibility of a given x. As shown by theorem (4.17) it

necessary to consider the whole set or some large subset of it
will be sufficient to solve only one linear program of the form (5.1),

namely,

(5.7) Minimize w = es+ + es
+ -
Wy +1Is =-1Is = aC(x)

vy20,s 20,5 20

This enormous simplification naturally depends on our capability

of finding a convex cone C in pos W, such that the proper

lower bound of any set will be fairly easy to compute. In the remainder
of this section we shall assume that the positive orthant pos I (or
some other orthant which can always be made to be the positive orthant
by an appropriate change in sign of some of the rows of the equations

T(E)x + Wy = p(£)) 1is contained in pos W. Given the practical use we
want to make of this assumption, proposition (4.19) justifies the restriction

to this case.

If the convex cone C of theorem (4.17) and its corollary can be

selected to be the positive orthant, then A(x) has a proper lower bound
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if it contains a point o such that o < éi, i= l,...,ﬁ for all
§ in A(x) CR". This ordering induced by pos I is usually referred

to as the componentwise ordering. Thus in this case verifying if 4(x)

has a proper lower bound, and if it does, finding jt, is usually fairly easy to

do. In particular if T 4is fixed, then

A(x) = {p(&)|p(&) ¢ 'sp} - Tx

and as shown in corollary (4.18) it suffices to find a proper lower

1

bound of (or its closed convex hull) with respect to the component-

wise ordering to determine a lower bound of A(x) for all x. 1In

- <
this case it is determined by apos 1 ~ Tx, where (apos I)i ey for

~
-
=

all p 1in P (or its convex hull),

Feasibility Criterion (5.8). Consider a stochastic program with fixed

recourse whose random elements satisfy a weak covariance condition.

Suppose that for all x the set A(x) possesses a proper lower bound
ac(x) with respect to the ordering induced by a closed convex cone C
contained in pos W. Then x in K; 1is feasible if and only if the

system of linear relatioms

(5.9) ow £ 0, oac(&) >0

is inconsistent, where ¢ 1is an m-row vector of variables Ui. In
particular, if C =pos I and T is fixed, then X in K; is feasible

if and only if the system of linear relations

(5.10) oW £ 0, 0o(a-Tx) >0

[§30

is inconsistent, where @ 1is a proper lower bound of
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with respect to the componentwise ordering, i.e., oy 2 Py for

~
=

p

all p in

Proof. This feasibility criterion is an immediate ccnsequence of theorem
(4.17) and its corollary, since if either sys:em above is solvable,

then there exists a hyperplane, determined by its normal o,

separating pos W and ac(i) in the first case and pos W and

a - Tx = (%) in the second case.

0‘pos 1

For computational purposes, the following proposition supplements

the feasibility criterion given above.

Proposition (5.11). Consider a stochastic program with fixed recourse

whose random elements satisfy a weak covariance condition and suppose that pos W g

contains the positive orthant pos I. Suppose further that the rows of
T and p are independent and that each E;, the support of the random
variables in row i of T and p, 1is bounded. Then apos I(x) exists

for all x and is given by

ai(x) = Min{(pi-Tix)l(P,T)E E;}

where ai(x) is the ith component of I(x). Further if the columns

a
pos
of T and p are also independent, then

n
o, (x) = ,Iéi,in Py - > ?Max tyy¥s
“pi j‘l -tij

The feasibility criterion (5.8) is a generalization of the feasibility
test found in [Wets, 1966-b; Section 2]. It is not difficult to see that

if x 1s infeasible and we find some ¢ satisfying (5.9) or (5.10),

-

-5 O Ay

R
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then we are in a very similar situation to that in algorithm (5.5) when
we found some row Wﬁ of the polar matrix of W and a point (p,T) of
£ which could be used to generate a linear constraint which has to be
satisfied by every feasible x but which fails to be satisfied by x.

If ac(ﬁ) = Po - Tcﬁ, where (pC,TC) belongs to p,T * then 1if o

satisfies (5.9), the hyperplane

(oTC)x = 0P,

separates K2 from %. When T is fixed the closed halfspace con-
taining K2 determined by this hyperplane, can be written

as
6.12) (6T)x 2 ga.

The feasibility constraints of type (5.12) bear more than a passing

resemblance to those found in proposition (5.4).

In the remaining part of this section we limit ourselves to the case when T
is fixed. The extension of the results below to the case when T also contains
random elements is essentially routine, but requires the introduction
of more than a reasonable amount of cumbersome notation which seem
hardly justified in this survey. The algorithm, in this case, is again a

modification of the algorithm (5.5). We replace step (iii) by
(111'') Solve the linear program

(5.13) Minimize w = es+ + es

Wy + Is+ -1Is =o - Txi

y20,s 20,8 20
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where o 1is a lower bound of with respect to the ordering induced by
pos I. Since pos W C pos I, the artificial variables s+ can be

deleted from the program (5.13) without impairing its feasibility. However,
if we incorporate them in our formulation, they guarantee a starting basis.
If w=0, then xi is a feasible solution and the algorithm

terminates. Otherwise at the optimum there is a set of

optimal multipliers o such that o(a-Txi) >0 and oW 20 (compare

these relations with those of the second part of the feasibility criteriomn

(5.8)). 1In this case the inequality
(5.14) (0Tx 2 ga

is added to S' to form $i+1 and the (i+l)sc iteration is started

from step (i).

Proposition (5.15). Suppose T fixed in a stochastic program with

fixed recourse whose random variables satisfy a weak covariance condition.
Moreover, suppose that o is a proper lower bound of the closed convex hull of
T with respect to the ordering induced by pos I and pos I C pos W.
Then, the algorithm (5.5) with step (iii'') terminates in a finite number

of steps. It either generates a feasible solution or recognizes that the

stochastic program is infeasible.

Proof. The matrix (W,I,~I) of program (5.13) contains only a finite
number of bases. Thus only a finite number of optimal multipliers of
type o© can be generated. Moreover, once a constraint of type (5.14)

; . i
has been introduced in the set § it can never be generated again.

In order for the minimum of w in (5.13) t> be positive, the optimal

solution must involve some of the artificial variables (s+,s_) at some

= e b
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positive level since otherwise w = 0, which implies that (a-Txi)

is in pos W and hence xi in K,. Thus in fact the number of possible
¢ 1is much smaller than all possible bases contained in (W,I,-I). These
vectors O are in fact normals to bounding hyperplanes of pos W which

support pos W 1in a set containing the origin. We have that

Proposition (5.16). Suppose that the basic optimal solution to (5.13)

with w > 0 contains exactly one of the artificial variables s .
Then o is the normal of a supporting hyperplane of pos W which inter-
sects (supports) pos W in a facet, i.e., an (m~1)-dimensional face of

pos W.

Proof. By assumption (see Section 2) pos W is of dimension m. The
proof is complete if we observe that the optimal basis contains (m-1)
linearly independent points of pos W contained in a hyperplane supporting

pos W.

Thus if Proposition (5.16) applies, we are generating some row of a

polar matrix of W, Moreover, every row of W* can arise in this way.

However, it is not always possible to obtain the normal of a facet of pos W

by solving (5.13). 1In [Van Slyke and Wets, 1969; Sections 2.D and 2.E] it
is shown that even though this process will in some sense yeild very good
constraints on x, in general [Van Slyke and Wets, 1969; Proposition (25)
and Corollary (27)] it will generate more than a minimal set of supporting
hyperplanes of pos W. Thus in general the row matrix obtained from the

normals of these hyperplanes does not constitute a minimal set as required

by the definition (4.9) of W,
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6. Characterizing Relatively Complete Recourse. As mentioned in the

beginning of Section 4, the models studied in [Dantzig, 1955], [Madansky,
1960], [Dantzig and Madansky, 1961], [Charnes, Cooper and Thompson,

1965], and [Kall, 1967] satisfy the relatively complete recourse condition,
“p,T
such that Wy = p(g) - T(Z)x. Since practical considerations seem to

i.e., for all x in K, and for all { in there exists y 2 0

indicate that in applications this condition will be very often satis-

fied and when it is, the work involved in solving the stochastic program is con~-
siderably simplified, it is of paramount importance to be able to determine
whether this condition is satisfied or not. The first efforts in this

direction can be found in [Wets, 1966-b], [Kall, 1967], [Wets, 1966-c] and
Dempster, 1968]. The hindsight that these studies have given us, shows

that this problem has close ties [Wets, 1966-c], [Dempster, 1968, Section

5], with the theory of positive linear dependence developed is due
by [Davis, 1954], [McKinney, 1962], {Bonnice and Klee, 1963], and more

recently by [Reay, 1965-a], [Reay, 1965-b] and [Hansen and Klee, 1969].

The study of various special forms of stochastic programs with recourse

[Walkup and Wets, 1969-a] suggests that it is convenient to distinguish

the following cases:

Definition (6.11). A stochastic program is said to have

(1) relatively complete recourse if K; D Kp;

(11) complete recourse if pos W = Rm;

(11i) simple recourse if W = (1,~I), up to permutations of rows

and columns if necessary.




-38-

Obviously, if W= (I,~-I) then pos W = RW and thus simple recourse
implies complete recourse which in turn implies relatively complete
recourse. This terminology was introduced in [Walkup and Wets, 1969-a}.
(It differs from the one used in [Wets, 1966-a] where the problem with
simple recourse was designated as the complete problem in recognition
of the fact that it is a special case of (6.1.ii). Subsequent develop-
ment of the subject has suggested the distinction given here). To verify
if a given problem has relatively complete recourse theoretically involves
computing K, and then verifying if the convex polyhedral set K, is contained
in the convex sec Kz' Thus, mce more we encounter here the problem of
determining 1if a convex polyhedron is contained in a convex set. As
already mentioned in Section 5, this problem might be easy or difficult,
all depending on the manner in which these two sets are defined. We shall
not pursue this matter any further here, at least not at this level of
generality. So far no general method to solve this particular problem
has been investigated. In the literature we know of only one example
of a problem with relatively complete recourse but not complete recourse.
Such a model was formulated by Tintner [Tintner, 1960] in connection with
the allocation of available resources in agriculture economics. This
model was later given the name of active approach to stochastic programming

[Sengupta, Tintner, and Millham, 1963]. In [Walkup and Wets, 1969-a,

Section 4] it is shown how this problem can be approached advantageously

by the tecnniques developed for stochastic programs with recourse.

Rather than seeking to characterize relatively complete recourse, the

research has concentrated on the characterization of complete recourse,
4‘
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In [Kall, 1967, Section 4] one finds various theorems yielding sufficient
conditions for complete recourse. These theorems correspond essentially to matrix
versions of the c aratheodory and Stinitz theorems [Reay, 1965-a] for polyhedral
cones. However, as mentioned in the beginning of this section, this problem

can best be handled in a somewhat more general setting. In [Wets,

1966~c] and perhaps even more clearly in [Dempster, 1968, Section 5] one

ar sy e

can see that the basic question can be formulated as: Given an m x n
matrix A determine the (facial) structure of the cone pos A generated
positively by the points corresponding to the columns of A; 1in particular,
determine if A contains a subset of columns which constitute a positive

basis for Rm.

Definition (6.2). A subset of columns (Al,...,Ak) = B of the matrix

A is a positive basis for R", if pos B = R" and the columns of B

constitute a frame (4.8), i.e., are positively linearly independent.

In the articles devoted to the theory of linear dependence, various
properties of positive bases have been found. Oue particularly useful
charac£;rization can be found in [Reay, 1965-al]. An algebraic version of
his theorem can be found in [Wets and Witzgall, 1968, Proposition 9].

An algorithm determining if a given cone pos A does or does not contain

a positive basis can be found in [Wets and Witzgall, 1967]. The two

last references deal with more general problems related to

the algebraic characterization of the facial structure of convex polyhedral
cones. As far as we are concerned here, one can find there some indication

LI of the work involved in obtaining frames, k-faces for pos W and in




particular the polar matrix of W. The particular problem of determining

if a stochastic program has complete recourse can be settled by finding the
lineality space of pos W [Wets and Witzgall, 1967, Section 4], where the
lineality space denoted by gpos W 1is defined as the union of all the
lines contained in pos W. In [Wets and Witzgall, 1967] it can be seen

that finding £ pos W amounts to a fairly small amount of computational

work. Obviously, we have the following proposition:

Proposition (6.3). A stochastic program has complete recourse if and

only if the dimension of £ pos W is m.

In general, if m - dim(£pos W) 1is small, the effort involved
in finding the lineality space is by no means wasted, since in this
case computing the polar matrix W* would be very easy. This would
allow us to use some of the algorithmic procedures described im the pre-

vious section which involve as prerequisite the computation of W*,

7. The Objective Function. The three preceding sections have been essentially

devoted to obtaining various properties of the set K, on which Q(x) < 4=,
which with Kl determine the feasibility region of the stochastic program
(2.2). In this section we shall be especially concerned with the properties
of z(x) on K or more particularly of Q(x) on Kz‘ In order to

derive these properties we shall rely on some results from the perturbation
theory for linear programming. Although we could use some more elementary
facts to obtain certain of the desired results, the theorem (7.2) below

is probably best sulted to our purposes, and is also a very useful conceptual

tool in the general area of stochastic programming. It has been used

[Walkup and Wets, 1968] to study the properties of decision rules, so
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prominent in literature devoted to stochastic programs with chance-
constraints. In order to allow us to rely on the intuitive geometric

content of this result, we need the following definition.

Definition (7.1). A finite closed polyhedral complex will be anv finite

T SRR ORISR A

; collection X of closed convex polyhedra, called cells of X, such

g that:

1

: (1) 1If C is a cell of X then every closed face of C 1is a

3 member of X.

] (ii) If C; and C, are distinct cells of X, then either they
+ are disjoint, or one is a face of the other, or their inter-

section is a face of each.

PalTENL SR

s - -

Theorem (7.2) (BASIS DECOMPOSITION THEOREM). Let P(t) denote the
i linear program
s Minimize cx
subject to Ax =t
x20
\ where ¢ is fixed and A 1is a fixed m x n matrix of rank m. Then:
; (i) P(t) 1is feasible if and onlv if t 1lies in pos A.
‘ (ii) Either P(t) 1is bounded for all t in pos A or P(t)
i
i is unbounded for all t in pos A.

(iii) If P(t) 1is bounded there exists a decompcsition of pos A
into a finite closed polyhedral complex X whose cells are

simplicial cones with vertex at the origin, and a one-to-one

correspondence between the one-dimensional cells of & and




-

selected colums of A which generate them such that
(a) the closed m~-dimensional cells of X cover pos A, and
(b) the m colums of A associated with the edges of a

closed m~dimensional cell C of X constitute an

optimal basis for all t in C.

This theorem which is proved in {Walkup and Wets, 1969-b] has
various important consequences, e.g., it follows from part (iii) that
provided P(t) is bounded there exists a piecewise linear con-
tinuous function x(t) which determines a basic optimal solution
for t in pos A. The particular consequences of interest here are

given in the two following corollaries.

Corollary (7.3). The function Q(t) = {Min cx]Ax = t, X 2 0} is a finite

convex polyhedral function on pos A unless Q(t) = -» for some t in

pos A, in which case Q(t) is identically -« on pos A.

Proof. The finiteness and unboundedness situations are taken care of

by part (ii) of the above theorem. For the remainder it suffices to observe
that Q(t) will be linear on every simplicial conical cell of the poly-
hedral complex X generated by the decomposition of pos A, and that

the convexity of Q(t) follows from the fact that if x0 and x! are
optimal solutions for t = to, t!, then (1-0)x% + Ax! 1is a feasible but

not necessarily optimal solution when ¢t = (1-0)t® + acl, et o

Corollary (7.4). The function Q*(t) = {Min tx|Ax = b, x 2 0} is a finite

concave polyhedral function which for every vector tT in pos(AI,—AT,I)
= {tlt =uA-vA+sIl,u2>0,v20,s?2 O}T unless Q*(t) = +» for

some tT in pos(AT,—AT,I) in which case Q*(t) 1is identically 4+~ on
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pos(AT,—AT,I).

Proof. This corollary follows trivially from the previous corollary
and a straightforward application of the standard duality theorem of

linear programming.
It is now easy to see that:

Proposition (7.5). The function Q(x,£) = Q(x,[q(&),p(&),T(¢)]) is a

~
-

convex polyhedral function in x on K, for each & in . Moreover,

it is concave polyhedral in q(Z) and convex polyhedral in (p(&),T(£)).

Proof. By definition Q(x,£) equals {Min q(E)yIWy = p(&) ~ T(&)x, y 2 O}.
The right-hand sides of the constraints of this problem are linear

in x and (p(£),T(t)). Application of Corollary (7.3) yields the
assertions of the proposition with respect to x and (p(£),T(£)). The

remainder follows from corollery (7.4).

Note that the above proposition is not restricted to the domain of
finiteness of Q(x,£) but in fact holds for all x in R® and £ in
=C RN provided one adopts the standard convention of setting Q(x,§) = +o
if the constraints define an empty set and Q(x,{) = ~» 1if the problem
is unbounded. This fact would allow us to prove the first assertion of
the theorem below without any restriction whatsoever on the distribution
of &3 1in fact, the convexity of z(x) holds even when W 1is also a

random matrix [Walkup and Wets, 1967-b; Theorem (4.%)],

Theorem (7.6). Consider a stochastic program with fixed recourse

2.2) whose random elements satisfy a weak cevariance condition. Then




—b4=

z(x) = cx + Q(x) = Eg{c(g)x + Q(x,£)} is a convex function on K.
Moreover, z(x) is either finite on K or 2z(x) ic identically -=

on K.

Proof. Since c¢x is linear in x and K, DK, it is sufficient to prove
the above assertions with z(x) and K replaced by Q(x) and K2
respectively. The convexity of Q(x) follows directly from the isotone

and subadditivity of the integral J[+du and proposition (7.5) which

yields the convexity of Q(x,£) in x. By theorem (4.1) the function

Q(x) 1is less than += for all x in K thus to complete the proof it

2,

suffices to show that if Q(®) ==~» for some x in K2, then Q(x)

It

-0

for all x in Kz' Suppose Q(X) = -» for some % in K2 then the

set {EIQ(Q,E)»= -} must have positive measure. This follows from our

definition of the integral and the weak covariance condition. By

~
)

k

corollary (7.3), for any ¢ in =, Q(%,£) = -» implies Q(x,8) =

for all x in K, . Thus for all x in K2 the set {g|Q(x,g)

L

has positive measure, i.e., Q(x) = - for all x in Kz‘

In general Q(x), and thus 2z(x), are not continuous on K, but
under very general conditions one can prove that Q(x) is lower semi-
continuous on the set on which it is finite [Walkup and Wets, 1969-c].
The lower semicontinuity of 2z(x) 1is in fact sufficient to imply its
continuity if we can show that K2 is polyhedral (see Section 4), since
every convex function ic upper semicontinuous on a convex polyhedron
[Gale, Klee and Rockafellar, 1968]. Under the conditions we have imposed

on the problem (2.2), we can prove a much stronger continuity condition
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which among other things allows us to show in the next section that the deter-

ministic equivalent program (3.2) possesses strong regularity properties.

Theorem (7,7). Consider a stochastic program with fixed recourse whose
random elements satisfy a weak covariance condition. Suppose z(x) is bounded
on K. Then z(x) satisfies a Lipschitz condition, i.e., there is some

constant B such that x,x% in K imply
lz(x) - z(xo)l < Ellx - xOH
where ll‘ll denotes the Euclidean norm in R".

Proof. Again the llnearity of cx allows us to restrict our attention

to Q(x). We must show that if Q(x) > - on K2 and

x,x0 € K2 then there exists some constant B such that
laG - D] < B]lx - x| .

Given any x in K, and ¢ in E, Q(x,£) is finite by Theorem
(7.6) and can be expressed in terms of a basic solution of a linear

program by writing

. -1
(7.8) Q(x,£) = q(»)(i)w(i)(p(i) - T(8)x)

where W(i) is a square nonsingular submatrixof W of rank m and
q(&)(i) is the corresponding subvector of q(&) as in theorem (4.1).

Since by proposition (7.3) the function Q(x,8) is convex polyhedral in

X, the function

pix,x050) = JQ8) = Q(x2,0)]

llx = x|
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achieves its maximum when x and x0 both belong to the region of
linearity which has maximum slope. For x and x0 in this region by (7.8)

we have that there exist some index (i) such that

- 0 = z -1 0_
(7.9) la(x,8) ~ @, 8) | = [q(8) () Wiy T (x*-0) |

Jix® - x|

Ia

Bisy I q(E)(i)H'HT(&)‘I

where B(i) is some constant related to the determinant of Wzi).
By the covariance condition (2.1) the right-hand side of the inequality

is integrable. Since the integral is order preserving we have that

e - a0 | = flacx, & - a(x, 8 [dr(®)

‘|

S By, %0 - x IIqu(E)(i) T(e) [|aRE) < Blx - x|

where B 1is the maximum over (i) of B(i)jWIq(ﬁ)(i)!'”T(C)HdF(E)- B
is finite since by theorem (7.2) there are only a finite number of cells

in X and for each index (i) the finiteness of the integral is assured by the

covariance condition (2.1).

So far we have made very little use of the form of the distribution
of & to derive the properties of the objective of the deterministic
equivalent program (3.2), except naturally for the covariance condition.
Below, we obtain two interesting characterizations of Q(x), or equi-
valently of z(x), which rely on some further properties of F(%5). The
first one of these theorems (7.17) can be obtained in many ways; for example,
one could make use of the representation of the epigraph of Q(x,8) in

terms of its supporting hyperplanes, i.e., use the properties of the polar
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matrix of [3 é] [Wets, 1967], or one could also use some arguments
involving the generalized inverse of W. However, in order to unify
our treatment, we shall rely on Theorem (7.15), which is a mild

generalization of a lemma in [Dantzig and Madansky, 1961].

A pair (x,8) ¢ Kzig is said to be aqcceptable if Q(x,£) 1is finite.
In view of Theorem (7.7) it is pointless to consider any other situation,
and thus, for the remainder of this section we shall limit ourselves to this

case. From duality theory, it follows that the linear program

(7.10) Maximize w = 7[p(§) - T(&)x]

subject to ™ = q(8)

where T isan m-row vector, is feasible and bounded whenever the pair

(x,E) 1s acceptable. Let
D(E) = {n]W 5 q(&)}

be the polyhedron determined by the constraints of (7.10). Its set of
vertices will be denoted by ext D(§). Note that ext D(£) might be
empty, but if it is empty for some £, then it is also empty for all ¢

in E£. If this 1s the case and since the programs (7.10) are bounded for

(x,8) € KZxE we must then be confronted with an acute intfectior of degeneracy.

For cach acceptable pair, let I(x,Z) be the set of optimal solutions
to (7.10), i.e., for each m(x,£) in T(x,£) we have that
T(%,8) [p{&) - T(E)x] = Q(x,E). The set I(x,5) 1is the convex hull of
vertices and extreme rays of D(f). By H+(x,€) we denote the convex
hull of the vertices of D(£) contained in N(x,£). Note that

+
1" (x,8) 1is empty only if ext D(§) is empty.




Proposition (7.11). For each x 1in K2, there exists a countable

and range Rm, with 7(x,f) Y-measurable

~
=

family {n(x,&)} with domain
and such that {n(x,&)} is dense in TM(x,£) for all £ in z, Such

a function 7(x,£) will be called an F-measurable selector.

Proof. For each x in K2, the graph {(H(x,&),i)[& € ?} of the

multivalued function M(x,%) is a Borel subset of R x % This follows

immediately from

(i) M(x,£) can be described by a finite number of algebraic

expressions in p(§),T(£) and q(£) which are obtained

from the optimality and feasibility requirements for linear
programs;
(ii) T is a closed subset of RN; and

(1ii) p(€),T(E) and q(&) are coordinates (projections) of ¢£.

~
)

Now, note that for all £ in , the sets T(x,f£) are non-empty and closed.

Since & 1is the completion of the Borel algebra on RN, a theorem on
measurable sc.ections [Castaing, 1967, Theorem (5.4)] ylelds the existence

of the F-measurable selectors {m(x,£)}.

For the remainder of this section, all we need is the existence of some

J-measurable selector n(x,£) in Hf(x,g). This can be obtained by invoking
some weaker resulit on measurable selectors [Freedman, 1966; Theorem (4)] or by
relying on the fact that in this case each function =(x,£) 1is the convex com-
bination of a finite number of "extreme" functions m(x,{) passing through the
vertices of polytopes determined by Hf(x,a). A constructive but rather lengthy

proot of the existence of some F-measurable selector, can also be found in

{Kall, 1967, Section i, Satz 1}.




AL NBIWNS ke HEN

P

“-—_—_—m

- LI e B A

~49-

Proposition (7.12). Consider an acceptable pair (;;5). Suppose that
D(E) # 0 and let w(x,£) € ﬁ(x,&). Then the hyperplane

H= {(z,x)lz + 1(x,E)T(E)x = n(;,ﬁ)p(g)} is a supporting

hyperplane »f the epigraph {(z,x)lz 2 Q(x,8), x € Kz} of the convex
polyhedral function Q(x,£) at the point (Q(x,£) ,x). Moreover,

[ n(x,£)T(E) || £ B(t) where B(£) is the maximum slope of a linear part

of the function Q(x,&).

Proof. The first part of the proposition follows from the fact that for

~
-

all x in K, and & in . m(x,E) is a feasible but not necessarily

optimal sclution of corresponding linear program (7.10), and thus
Q(x,6) = m(x,8) [p(&) - T(&)x] 2 7(x,8) [p(&) - T(&)x].

Hence, for all x in K, and 2z 2 Q(x,£), i.e., for the points belonging

to the epigraph of Q(x,£), we have that

(7.13) z + 1(x,8)T(E)x 2 m(x,E)p(E).

That H supports at (Q(§,£),§), follows from the identity
(7.14) Q(x,6) = 7(x,8) [p(&) - T(&)x].

The remainder follows from the observation that 7(x,£) is a

vertex or a convex combination of vertices of D(f), which correspond to

basic solutions of (7.10), Arguments similar to those invoked to obtain (7.9)

yield the desired inequality.

The first yart of the following theorem is a slight generalization of

Lemma 2 in [Dantzig ard Madansky, 1961]. Although it is a trivial

P 'W“:‘}"ﬁ“,ﬁ !




consequence of the two previous propositions, it has proven to be
extremely useful as a conceptual guide when one seeks algorithmic pro-

cedures for solving stochastic programs.

Theorem (7.15). Let x belong to Kz and n(x,£) 1is an G-measurable

selection of HT(E,E). Then the hyperplane {(z,x)|z + Eg{ﬂ(i.E)T(E)}x =

Eg{n(§,€)p(5)}} is a supporting hyperplane of the epigraph
{2, ]z 2 Q(x),x ¢ Kz} of Q(x) at the point (Q(X),x). Moreover,

Eg{llﬁ(;rg)T(5)||} S B where B is the Lipschitz constant of Q(x)
as in (7.7).

Proof. The first part of the theorem follows from integrating both sides
of the relations (7.13) and (7.14). The measurability question is taken
care of by the fact that in each case the expressions involved are
continuous functions of measurable function and the finiteness of the
integrals is assured by our assumptions on problem (7,10) and the
covariance condition (2.1). As for the remainder, it follows straight-

forward from (7.9) and the definition of Hﬁ(§,g).

Corollary (7.16). Suppose the matrix T is fixed. For all x in Ky,

let 7(x) = EE{W(§,£)} where 7(x,£) 1is an J-measurable selection. Then
the vector (1,7(x)T) 1is the normal of a supporting hyperplane of the

epigraph of Q(x) at (Q(x),x). Moreover, ||m(x)T|| < B.
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Theorem (7.17). 1If i{s a finite set, i.e., when F(£) is

a finite discrete distribution, then Q(x) is a convex polyhedral

function.

Proof. Q(x) = EE{Q(x,E)} is by (7.5) a convex combination of a finite

number of polyhedral functions in x,

Combining the last theorem with the second part of theorem (4.7)

~
~
-
-

it follows naturally that when is finite the deterministic equivalent
program (3.2) can be written as the minimization of a convex polyhedral
function on a convex polyhedron or by introducing some additional con-
straints as a linear program. One way to do so, but not necessarily

the most efficient one (especially if the assumption of relatively complete
recourse is not satisfied and some of the components of q and T are
random), is to express the problem as a large-scale linear program along

the lines of [Dantzig and Madansky, 1961; (29), (37)], a variant of which

can be found in [Wets, 1966-b ; Section 3B, Case 1].

If F(f) 1is an absolutely continuous distribution, then the following

propositions can be found in [Kall, 1967], and [Wets, 1966-b], respectively.

Proposition (7.18). Consider a stochastic program with complete recourse,

such that q 1is fixed and F(f) 1is an absolutely continuous distribution.

Then Q(x) is differentiable on K2 = R,

Proposition (7.19). Consider a stochastic program with fixed recourse such

that q and T are fixed and F(£) is an absolutely continuous distri-

bution; then Q(x) 1is differentiable.
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Both proofs rely essentiaily on the fact that for a given x,
N(x,£) 1is only multivalued on sets of measure zero. Thus in view of

~

theorem (7.15), integrating =(x,£)T(£) on where #(x,£) is any
g-measurable selection always determines the same supporting hyperplane
of the epigraph of Q(x). From this it is implied that the supports are unique

for all x in l(.2 i.e., the convex function Q(x) is differentiable

[Rockafellar, 1969; Section 25]. Although both propositions are correct, their
proofs are incomplete since thev fail to show that every normal to a support

of Q(x) can be obtained as the integral of F-measurabie selectors of

M(x,£). This and some generalizations of the above propositions will

be included in a projected paper.

For stochastic programs with simple recourse, it suffices that the
marginal distribution of the subvector of random variables (pi(E),Ti(E),qi(E))
i=1,...,m be absolutely continuous [Walkup and Wets, 1969-a; Proposition
(2.8)]. 1If only the right-hand sides p(f) are random, it suffices that
each marginal distribution of & be continuous [Wets, 1966-a; Proposition
(21)]). All these constitute sufficient conditions for differentiability
of Q(x). There does not seem to be any simple condition which weuld also

be necessary for the differentiability of Q(x).

8. Some Regularity Properties of the Equivalent Program. The study of

constrained optimization has led to various regularity conditions for opti-
mization problems which in some sense determine if the problem is 'well"
formulated and usually give some indication as to the type of method(s)

one could reasonably expect to generate solution procedures. The standard
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approach is to study the effect that small perturbations of some of the

constraints will have on the optimum. For convex programs these regularity
conditions have been traditionally-—and for good reasons--related to the pro-

perties of a so-called dual problem, although they can very often be verified

without necessarily deriving the actual dual problem [Rockafellar, 1567],

[Van Slyke and Wets, 1968], [Rockafellar, 1968].

Definition (8.1). A convex program s

(1) feasible if the set determined by the constraints is nonempty,

(i1)  solvable if the value of the infimum is finite and achieved
for some value of the variable,

(iii) dualizaple if there is no duality gap, i.e., if the optimal
value of the convex program and its dual are equal,

(iv) stable if there exist (optimal) nontrivial Lagrange multi-
pliers or equivalently for convex programs if the dual problem

is solvable.

The terminology used here differs from that used by [Rockafellar, 1967]
and [Van Slyke and Wets, 1968] in only one respect: The dualizable
condition corresponds to what they refer to as normality. Note that if a
convex program is stable, it is also dualizable [Van Slyke and Wets,

1968: Proposition (6.8)] and obviously that solvability implies feasi-

bility.
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In Sections 4 and 7 we have established that the deterministic
equivalent program of a stochastic program with fixed recourse whose
random elements satisfy a covariance condition is a convex program of the

form

(8.2) Pind inf z(x) = cx + Q(x)

Ax s b

WAT > Wap(r) Wret

(z)x p(z) T
x 20

where z(x) 1is a convex finction which is either identically -= on
the subset Kz of R" determined by the induced constraints or it is
finite on K, in which case it is Lipschitzian with constant B=||c|l+ B,
vhere B 1is the constant for Q as defined by Theorem (7.7). Here, we
shall consider perturbations of the fixed constraints Ax = b, Following

[Van Slyke and Wets, 1968; Section 3] we can thus write the dual program

of (8.2) as

(8.3) Find sup v
subject to v 2 Q(x) + (c-mA)x + 7

for all x e K, {x|x 2 o0}.

This program can be interpreted as seeking the "highest" supporting
hyperplane of the epigraph € of the variational function

¢(u) = {Inf z(x)IAx =b -u, X¢ K, F\R:J.
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Characterizing feasibility for the program (8.2) has been the burden
of Section 5. In the remainder of this section we investigate some
sufficient conditions for the program (8.2) to satisfy one or more of the
properties listed in definition (8.1). We shall see that for a broad
class of stochastic programs with fixed recourse, the equivalent convex

program possesses the desirable regularity properties.

Theorem (8.4). Consider a stochastic program with fixed recourse whose

random elements satisfy a weak covariance condition and suppose that the
constraint set K 18 bounded, then the deterministic equivalent program

(8.2) is solvable and dualizable.

Proof. If 2z(x) = -« on K, the theorem follows trivially from the
standard +#= conventions. If 2z(x) is finite, it is Lipschitz (7.7)
and thus continuous, i.e., attains its minimum on K = Kl F\Kz which is
compact since it is bounded by assumption and closed since it is the
intersection of a closed polyhedron K1 and the closed set K2 (Theorem
(4.7)). Thus (8.1) is solvable. It remains to be shown that in this case
it is also dualizable. This follows in a rather straightforward fashion
from [Van Slyke and Wets, 1968; Proposition (5.1)] and the observation
that the compactness of K and the continuity of 2z(x) 1is sufficient to
establish that the epigraph € of the variational function

¢(y) = {Min 2(x)|x € K-y} 1s a closed set.

Easy examples of stochastic programs with recourse can be found,
satisfying all hypotheses of the previous theorem except the boundedness

of K, whose infimum is finite but which are not solvable. In {Williams,

ps
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1965] one can find a detailed characterization of this situation for
stochastic program with simple recourse. The dualizability of (8.2)
also requires some restrictions. The following example which has
only T random and K unbounded possesses a deterministic equivalent
program which is not dualizable; ir fact, in this case there is an

infinite duality gap.

Example (8.5). The deterministic equivalent program of

Find 1inf z(x) = - x, + EE{Min Y\ }
X, = x, =0
£, Yy, -, =0
5282 = YZ - Y3 =0
Xy X%, 20 Yis Yo ¥320

where 51 has a continuous distribution on [1,0) with density

f(&l) = 5:2 and £2 =& - 1, has an optimal value of 0. The
optimum value of the dual of the deterministic equivalent program is

-, It 18 not known if there exist stochastic programs (with fixed
recourse or not) whose deterministic equivalent programs exhibit a finite

duality gap.

The following lemma proved in [Walkup and Wets, 1969-d] is parti-
cularly useful since it is immediately applicable to all stochastlic programs
whose constraints determine a polyhedral region. Theorems (4.7), (4.10)
and Corollary (4.13) have shown that this will be the case in all but the

most sophisticated applicationms.
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Lemma (8.6). Consider the mathematical program

(8.7) Minimize £f(x)
subject to Ax = b,

x20

where the objective f 18 convex and Lipschitz on a polyhedron and (8.7)

is finite, then (8.7) 1is stable.

Theorem (8.8). Consider a stochastic program with fixed recourse whose

random elements satisfy a weak covariance condition., Suppose that K
is polyhedral and the program is finite. Then the convex program (8.2)

is stable,

Proof. It suffices to observe that by Theorems (7.6) and (7.7) the hypotheses
of the Lemma (8.6) are satisfied.

To see that the hypotheses of Theorem (8.8) are necessary to obtain
stability, consider again the example (8.5) with the additional fixed
constraint . 1. This problem has a finite optimum, in fact, is
solvable. However, small perturbations of the constraints will change the

value of the optimum drastically. It is easv to verify that the dual is not

solvable.
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